PUBLICATIONS

  1. HOME
  2. PUBLICATIONS
  3. 2000–2018

2000–2018

Comparative regenerative mechanisms across different mammalian tissues.

Iismaa SE, Kaidonis X, Nicks AM, Bogush N, Kikuchi K, Naqvi N, Harvey RP, Husain A, Graham RM.

npj Regenerative Medicine 3:6, 2018.

Zebrafish Regulatory T Cells Mediate Organ-Specific Regenerative Programs.

Hui SP, Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, Hesselson D, Kikuchi K.

Developmental Cell 43:659-672.e5., 2017.

NAD Deficiency, Congenital Malformations, and Niacin Supplementation.

Shi H, Enriquez A, Rapadas M, Martin EMMA, Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes JN, Sugimoto K, Humphreys DT, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho JWK, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, Dunwoodie SL.

The New England Journal of Medicine 377:544-552, 2017.

Zebrafish FOXP3 is required for the maintenance of immune tolerance.

Sugimoto K, Hui SP, Sheng DZ, Nakayama M, Kikuchi K.

Developmental and Comparative Immunology 73:156-162, 2017.

Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch.

Sugimoto K, Hui SP, Sheng DZ, Kikuchi K.

Elife 6:e24635, 2017.

Endogenous Mechanisms of Cardiac Regeneration.

Xiang MS, Kikuchi K.

International Review of Cell and Molecular Biology 326:67-131, 2016.

Myocardial NF-κB activation is essential for zebrafish heart regeneration.

Karra R, Knecht AK, Kikuchi K, Poss KD.

Proceedings of the National Academy of Sciences USA 112:13255-60, 2015.

Dedifferentiation, Transdifferentiation, and Proliferation: Mechanisms Underlying Cardiac Muscle Regeneration in Zebrafish.

Kikuchi K.

Current Pathobiology Reports 3:81-88, 2015.

Advances in understanding the mechanism of zebrafish heart regeneration.

Kikuchi K.

Stem Cell Research 13:542-55, 2014.

Transcriptional components of anteroposterior positional information during zebrafish fin regeneration.

Nachtrab G, Kikuchi K, Tornini VA, Poss KD.

Development 140:3754-64, 2013.

Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration.

Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD.

Proceedings of the National Academy of Sciences USA 110:13416-21, 2013.

Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function.

Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE, Burns CG.

Development 140:1353-63, 2013.

Cardiac regenerative capacity and mechanisms.

Kikuchi K, Poss KD.

Annual Review of Cell and Developmental Biology 28:719-41, 2012.

The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion.

Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD.

Development 138:3421-30, 2011.

tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration.

Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD.

Development 138:2895-902, 2011.

Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration.

Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD.

Developmental Cell 20:397-404, 2011.

A dual role for ErbB2 signaling in cardiac trabeculation.

Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY.

Development 137:3867-75, 2010.

Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish.

Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DY.

Developmental Cell 18:973-84, 2010.

Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes.

Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD.

Nature 464:601-5, 2010.

IL-7 specifies B cell fate at the common lymphoid progenitor to pre-proB transition stage by maintaining early B cell factor expression.

Kikuchi K, Kasai H, Watanabe A, Lai AY, Kondo M.

The Journal of Immunology 181:383-92, 2008.

Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment.

Hsu CL, Kikuchi K, Kondo M.

Blood 110:1420-8, 2007.

AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes.

Kyuuma M, Kikuchi K, Kojima K, Sugawara Y, Sato M, Mano N, Goto J, Takeshita T, Yamamoto A, Sugamura K, Tanaka N.

Cell Structure and Function 31:159-72, 2007.

Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth.

Kikuchi K, Kondo M.

Proceedings of the National Academy of Sciences USA 103:17852-7, 2006.

A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration.

Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD.

Cell 127:607-19, 2006.

IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF.

Kikuchi K, Lai AY, Hsu CL, Kondo M.

Journal of Experimental Medicine 201:1197-203, 2005.

Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif.

Kikuchi K, Ishii N, Asao H, Sugamura K.

Biochemical and Biophysical Research Communications 306:637-43, 2003.

Consequences of OX40-OX40 ligand interactions in langerhans cell function: enhanced contact hypersensitivity responses in OX40L-transgenic mice.

Sato T, Ishii N, Murata K, Kikuchi K, Nakagawa S, Ndhlovu LC, Sugamura K.

European Journal of Immunology32:3326-35, 2002.

Suppression of thymic development by the dominant-negative form of Gads.

Kikuchi K, Kawasaki Y, Ishii N, Sasaki Y, Asao H, Takeshita T, Miyoshi I, Kasai N, Sugamura K.

International Immunology 13:777-83, 2001.

STAM2, a new member of the STAM family, binding to the Janus kinases.

Endo K, Takeshita T, Kasai H, Sasaki Y, Tanaka N, Asao H, Kikuchi K, Yamada M, Chenb M, O’Shea JJ, Sugamura K.

FEBS Letters 477:55-61, 2000.